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The higher-order theory of the Weissenberg effect is developed as a perturbation of the 
state of rest. The perturbation is given in powers of the angular frequency R of the 
rod and the solution is carried out to O(R4). The perturbation induces a slow-motion 
expansion of the stress into Rivlin-Ericksen tensors in combinations which are com- 
pletely characterized by five viscoelastic parameters. The effects of each of the 
material parameters may be computed separately and their overall effect by super- 
position. The values of the parameters may be determined by measurement of the 
torque, surface angular velocity and height of climb. Such measurements are reported 
here for several different sample fluids. Good agreement between the third-order 
theory and measured values of the velocity is reported. Secondary motions which 
appear at  O( Q4) are computed using biorthogonal series. The analysis predicts the 
surprising fact that secondary motions run up the climbing bubble against gravity 
and intuition. 
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1. Introduction 
Normal stresses will usually exist in shearing flows of fluids with nonlinear history- 

dependent relations between stress and deformation. These normal stresses make free 
surfaces bulge in or out, so that by looking at free surfaces induced by shearing we can 
find out something about the constitutive equation for the fluid. In  the Weissenberg 
effect, the shearing flow is set up by differential rotation of two concentric cylinders, 
and the normal stresses will drive the fluid up the inner cylinder, if it is small enough. 
In  the general problem, when the inner cylinder is not small, the free surface responds 
to normal stresses but the description of the response is not so simple. 

A mathematical description of the Weissenberg effect can be obtained as a series of 
powers of the angular frequency 0 of the inner cylinder. The basic mathematical ideas 
for this perturbation series were given by Joseph & Fosdick (1973) and Joseph, 
Beavers & Fosdick (1973). Beavers & Joseph (1975) used the series solution to study 
the m'eissenberg effect observed in experiments on free surfaces induced by the steady 
rotation of cylinders of small diameter. They showed that the polymeric oils used in 
their experiments had a second-order range, i.e. a range in which the height of climb 
was linear in Q2. In the second-order theory there is only one viscoelastic parameter, 
the climbing constant, and it was shown that the values of this parameter, and even its 
dependence on temperature, could be determined from measurements of the height of 
climb. 

In  this paper, we consider the higher-order theory and obtain solutions of the 
perturbation problems up to and including terms O( Q4). The response of any visco- 
elastic fluid to steady rotation of the cylinders up to terms O(Q4) depends on the 
viscosity and on four viscoelastic parameters. All five constants can be determined 
from measurements of quantities computed in the theory. 

The interesting quantities which appear in the analysis arise in the formal ordering 
of the solution in powers of Q. We first explain this ordering in physical terms. The 
head CD = p + p g z ,  the pressure p ,  the free surface z = h(r; 0) and the secondary 
motion should not change when the direction of rotation is reversed; therefore the 
power-series solutions for these quantities contain only even powers of 0. The circum- 
ferential component of velocity v and the associated stress should change sign with 0. 

(1.la) 
It follows that 

h(r; 0) = hf21(r) - + hC41(r) - -t O(Q6), 

( l . l b )  @(r, z ;  Q) = p +pgz = @(2) - + @(4)- + O(Q6),  

Q2 0 4  

2! 4! 

0 2  Q4 
2! 4! 

The velocity field u has been split into a circumferential component and a secondary 
motion, which is given by dezivatives of a stream function $(r, z ;  0). 

Different characteristic physical effects are associated with different powers of Q 
in the series solution. When there is no rotation, the free surface is flat and the pressure 
is hydrostatic. At first order in 0 ,  there is a z-independent flow in circles with no change 
in the pressure or flat free surface. At order two, the pressure must equilibrate the 
radial forces arising from centripetal accelerations and normal stress. The free surface 
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acts as the barometer for the interior pressure distribution, rising where the interior 
pressure is greatest. The free surface can remain flat only if there is no motion. The 
departure from flatness of the free surface a t  order two requires that the circum- 
ferential velocity a t  order three should depend on z. This is a consequence of the fact 
that the circumferential component of the shear stress 

S,, = SBo- h'Sre, (1.2) 

which vanishes automatically for z-independent fields when the free surface is flat, 
can vanish when the free surface is not flat only when Sze = h'S,, does not vanish. The 
z dependence of the circumferential field a t  third order is generated without changing 
the pressure or shape of the free surface. The z-dependent circumferential field generated 
at order three is associated a t  order four with forces that also depend on z ;  such forces 
inevitably exert torques in the plane 0 = constant, and lead to secondary motions. 

The equations which govern the perturbation fields have already been derived by 
Joseph & Fosdick (1973). However, their equations need to be modified slightly in 
order to include the effects of surface tension at  orders three and four. A second-order 
theory which includes the effects of surface tension is given in § 12 of Joseph & Fosdick 
but it applies to the flow induced by a rotating cylinder in an infinite fluid and not to 
the flow between cylinders. Their solutions at  third and fourth order are valid only 
when the surface tension T = 0,  and the fourth-order solution is also restricted to the 
case when the distance between the cylinders is small. It is our purpose to remedy 
these deficiencies and to complete the solution so that circumferential velocity 
distributions and secondary motions may be computed in a completely explicit and 
useful form suitable for the quantitative prediction needed for rheometrical measure- 
ments. 

Since the solution is constructed by perturbations and each problem in the per- 
turbation sequence is linear, the solution may be constructed by superposition. These 
superpositions are few in number at second and third order. But in the fourth-order 
theory there are already a rather large number of possible superpositions among two 
geometric and four unknown viscoelastic parameters. The viscoelastic parameters are 
supposed to be unique and they do not change when the cylinder dimensions and 
speeds are changed. So, in principle (and in fact), we may find these parameters by 
comparing theory and experiment. 

The determination of the values of the viscoelastic parameters up to order four is 
the main contribution of this paper to rheometry. As far as we know this is the first 
such determination. However, the procedures required by the fourth-order theory are 
much more elaborate and less accurate than those used in the second-order theory. It 
may or may not be possible to simplify these procedures to the extent required for 
practical rheometers. 

This paper also makes a contribution to our understanding of the fluid dynamics 
of the Weissenberg effect. The analysis shows how the requirement that the free 
surface be free of shear tractions must lead to a vertical stratification of the circum- 
ferential velocity ee v(r, z ;  Q). We show that when Q is small the circumferential speed 
V ( T ,  h; SZ) on the free surface z = h(r; a) is greater than the speed B(r; SZ) = v(r ,  - ao; SZ) 
of a viscometric flow of the same fluid on each circle satisfying the inequality 

ah(r; Q ) / a r  < 0; 
~ a - ~  
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that is, when Q is small the inequality 

J .  Yoo, D. D. Joseph and G .  S.  Beavers 

V ( P ,  h; Q) - E ( P ;  Q) 
< O  

ah(r; Q) /ar  

holds on each circle between the cylinders. The stratification with respect to z of the 
angular velocity generates secondary motions by inducing torques in azimuthal planes 
0 = constant. We compute the stratification of the torques and the secondary motions 
and find, to our surprise, that the fluid is driven up the climbing bubble against 
gravity. And we show that the same effect occurs in our experiments as in our analysis. 
The method of analysis of secondary motions, using biorthogonal series, is relatively 
new and may be of independent interest. 

The organization of the paper is as follows. In  $ 2 we briefly review the theory of 
steady flow of a viscoelastic fluid perturbing a state of rest; the equations which 
govern the Weissenberg effect are set down without derivation in $ 3 ;  a few of the 
main results of the theory of domain perturbations which are used in the analysis are 
reviewed in $ 4; and the derivation of the perturbation equations is sketched in 5 5.  
In  $ 6 we write the solutions in a dimensionless form as a sum over components whose 
coefficients contain the viscoelastic parameters but which themselves are independent 
of t'hese parameters. Solutions for some of the component functions and the equations 
governing the others are also set out in $ G .  I n  $ 7  we discuss some properties of the 
solutions given in $9 8-1 1. The solutions are given in the form of series whose co- 
efficients are defined by integrals which must be computed numerically. Graphical 
representations of the final solutions, suitable for quantitative comparison with 
experiment, are also given in these sections. In  $ 12 we explain how to measure the 
viscoelastic constants and determine the values of these constants for several fluids. 
I n  $ 13 we invert the mapping and exhibit angular velocity contours and streamlines 
for the secondary flow in the actual domain occupied by a fluid whose parameters are 
known from the analysis and the measurements reported in $ 12. We show in 5 13 
that when Q is small the fluid actually climbs the bubble against gravity and we give 
an explanation of the observed dynamics of the motion when i2 is outside the fourth- 
order range. The observed dynamics for larger values of Q outside the range of our 
theory consist of large-eddy secondary motions driven by torques associated with the 
vertical stratification of the angular velocity and a small secondary eddy (or bead) 
rotating against the big one and joined to it a t  a cusp-like indentation of the free 
surface. An appendix is given over to discussion of mathematical properties of the 
biorthogonal series used to find the secondary motion. 

2. Constitutive relations 
The total stress in an incompressible simple fluid is given by 

T = - P I  + S, 

where p is a constitutively indeterminate pressure and S is an extra stress given by 

S = 9 G (s) , G(s) = C,(t-s)-l,  t r S  = 0, 
I s - 0  1 (2.la) 
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C, being the relative right Cauchy-Green strain tensor 

C, = F,T F,, F, = gradx,, G(0) = 0. ( 2 . l b )  

Here s = t - T, and xt(x, t - s) denotes the point occupied a t  time T < t by the particle 
which a t  the present time t is a t  the point x. G(s) is called the history and F is a 
hereditary response functional. 

For slow steady flow $ is known except for some material constants whose values 
are to be obtained by rheometrical measurements (see Beavers & Joseph 1975). We 
call u(x, E )  = EV(X, c )  a smooth slow steady motion if v(x, 0)  and all of its spatial 
derivatives are continuous and uniformly bounded in the closure of the domain on 
which they are defined (Joseph 1974). If it is assumed that S has Frechet derivatives 
of all orders a t  the point G(s) = 0, then one map formally expand S in a Taylor series 
(Coleman & No11 1960; Giesekus 1961; Langlois & Rivlin 1963) whose partial sum is 

N N 

n= 1 n= 1 
S(N) = C S,[A,,A,-,, ***,A,] = C cnSn[an,a,-,,  ...,a,l, 

where A, = ena, ; the A, are Rivlin-Ericksen kinematic tensors defined by 

A, = grad u + (grad u ) ~  ( 2 . 2 a )  

and ( 2 . 2 b )  

The tensor-valued functions S, of A, can be written out explicitly (see Truesdell & 
No11 1965; Truesdell 1974). The first four of the S, are 

(2.3a, b )  

S3[A,,AZ,A31 = P ~ A ~ + P ~ ( A ~ A ~ + A ~ A z ) + P ~ ( ~ ~ ~ ~ ) A ~ ,  ( 2 . 3 ~ )  

A,,, = (grad A,) u +A, grad u + (grad u ) ~  A,. 

SlllA11 = PA,, S,[A,, A21 = “1 A2 + a2 A& 

S,[Ai, Az, A37 A41 = 71 A4 + Y2(A3 + A3) + 73 
+y4(A2A?fA!A2) +y5ys(trA2)A2+y6(trA2)A! 

+ {Y, t r  A, + ys(trA1 A2)Pl. ( 2 . 3 d )  

The coefficients p, al, a2, p,, p2, p3, y,, y2, ..., y8 are constants, or, more generally, 
functions of the temperature. 

Not all of the rheological constants which appear in (2.3) enter the equations which 
govern the functions mentioned under (1 .1) .  The rheological constants which do 
matter in our analysis are 

p> 011, “2, $ =pZ+p3> ? = Y3fY4+Y5+$Y6* 

Joseph & Fosdick (1973, $ 2 )  noted that these constants could be expressed in terms 
of the constants which arise in the expansion of the three viscometric functions in 
powers of K, the shear rate; p, a, and a2 are determined by the values of two of the 
viscometric functions and ,2 and 7 by the slopes of the viscometric functions at zero 
shear. It is very difficult to find these values, especially the slopes, from measurements 
with standard rheometers (see Beavers & Joseph 1975, $ 3).  

Certain important combinations of the viscoelastic parameters appear in the 
analysis : 

N2 = 2a1 + a2, second normal-stress coefficient a t  zero shear, 
B = 3a1 + 2a2, climbing constant a t  second order, 
& = a, + a2, torque constant at fourth order. 
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The second normal-stress coefficient is equal to the climbing constant minus the 
torque constant. We note that al < 0 (see Coleman & Markovitz 1964). 

The Rivlin-Ericksen kinematic tensors A, and the tensors S,, are homogeneous 
functions of degree n in U. It is convenient to define the tensor-valued functionals - 

S,[U,u, ..., ul = S,[A,,A,,-,, ..., A,] = EnSn[an,an-l, ..., all - 
=- €ns,,[v, v, .. .) v]. 

n times 

3. Governing equations 
An incompressible simple fluid is set into an axisymmetric motion by the steady 

rotation of two concentric cylinders with angular velocities s1 a t  r = i2 and AR at 
r = 8, respectively. The free surface on top of the fluid deforms into an axisymmetric 
shape given by z = h(r; a), which was flat when s1 = 0, i.e. h(r; 0) = 0. The region 
occupied by the fluid is designated as 

= +-,e,zli2 G r G 6, o G e G 2n, -a < z G h(r; Q?}, 

where ( r ,  8, z )  are cylindrical co-ordinates. In  Va we have 

p(grad u) u = -grad CD + div S, div u = 0, (3 .1a,  b )  

where (gradu) u = (u . V) u and @(r,  z )  = p ( r ,  z )  -pa  +pgz,  where pa is the local 
atmospheric pressure. The boundary conditions at the cylinder walls are 

eeR& at r = 6, 
eeA& a t  r = 8, u = {  ( 3 . 1 ~ )  

and on the free surface of t,he fluid domain the shear traction vector and the normal 
component of the velocity vanish: 

u .n  = S,, = S,, = 0 a t  z = h(r; a), (3.14 e,f 1 
where n is t,he outward unit normal to the free surface and t is the unit tangent vector 
in the int,ersection of the free surface and the plane 8 = constant. Moreover, far below 
the free surface we specify that the axial velocity field and the shear traction field 
on right cross-sectional planes vanish: 

u.e,, Szs, S,,.+O as z - + - a .  (3.1% h, i) 

We shall refer to ( 3 . l g ,  h, i) as ‘asymptotic conditions’ as z+ - a. The problem may 
be fully stated if the surface profile z = h(r; R) is known in advance. Assuming the 
constitutive relations of the classical theory of surface tension, the jump in the normal 
stress across the free surface is balanced by the surface tension. Thus, at  z = h(r;  R), 

p g h - @ + S , , - T ! (  rh’ ) ’ = o .  
r (1  +h’2)4 

Equation (3.1 j) is a second-order inhomogeneous ordinary nonlinear differential 
equation; it is to be solved subject to prescribed conditions for the surface heights and/ 
or the slopes at  the end points. We observe that the scalar quantity CD appears in 
(3.1j), but from ( 3 . l a )  it is determined only up to an arbitrary additive constant. 
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This constant and the plane on which z = 0 are fixed by the condition that the total 
volume below the free surface is conserved: 

f i r h ( r ;  R ) d r  = 0 .  (3.1 k) 

It is useful to decompose the axisymmetric velocity u into physical components as 

u = v(r,z)e ,+q (3.2) 

(3.3) 

follows: 

and 

where q may be found from a stream function $(r,  z ) ,  namely, 

q = UP, 2) er + w(r, 2) e,, 

It is also convenient to decompose S as follows: 

S = ~A,[u] + ~ [ u I  (3.5a) 

and 
H 

S[U] = S,[U, u] + S,[U, u, u] + S,[U, u, u, u] + . . . , (3 .5b )  

where the S,[u, u, . . . , u] are homogeneous functionals of degree n in u. Then, noting 
that Q, and the physical components of the extra stress S are independent of 8, the 
dynamic equation ( 3 . 1 ~ )  may be replaced by the equivalent set of equations in Vn: 

where 

The boundary conditions are 

v(ii,z) = Rii, v(b^,z) = hR8, 

u(8,z) = u(b^,z) = 0, w(ii,z) = w(8,z) = 0. 

( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

(3.7a) 

(3.7b, c) 

We next express the free-surface conditions in cylindrical co-ordinates, and we 

( 3 . 8 ~ )  

find that (3 . ld,  e ,  f )  become 

w - (dh/dr)  u = 0, 

(3.8b) 
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a t  z = h(r; Q). Likewise, (3.1g, h, i) can be written as 
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Finally, we use the condition that S,, = 0 on z = h(r; Q) to express Sn, as 

s,, = s,, - h's,; 
thus (3. lj) becomes 

T(,,,,,,,,) rh' 
' - p g h + @ + ~ ~ - & + h ' S ,  = 0 (3.10) 

at z = h(r; Q). The boundary conditions for h(r; Q) are selected from the following 
four possibilities: 

( 3 . 1 1 ~ )  

(3.116) 

(3 .11~)  

and h(i2; Q) = dh(8; R)/dr = 0. (3.1 Id) 

dh(i2; Q)/dr = dh(8; Q)/dr = 0, 

h(6; Q) = h(8; Q) = 0, 

dh(a^; Q)/dr = h(8; Q) = 0 

0 is made definite by imposing the condition of constant volume (3.1 k). 

developed there are incomplete for reasons already specified in Q 1.  

details. 

Equations (3.6)-(3.10) were derived by Joseph & Fosdick (1973) but the solutions 

Now we shall derive the perturbation equations, skipping all but the most essential 

4. Domain perturbations 
A formal solution of (3.6)-(3.11) can be obtained as a series in powers of Q whose 

coefficients are derivatives of the solution evaluated in the rest state. In  the rest state 
all of the components of the stress and velocity, the head and h(r; 0) vanish identically. 
In addition, a simple consideration of symmetry of the problem with respect to a 
change in the sign of Q shows that 

v ,  S,,, S,, are odd functions of Q 

u, w, @, h, S,,, S,,, S,,, S,, are even functions of Q 

(4.1) 

satisfying (3.6a), (3.7a), (3.8b) and (3.9b), whereas 

(44 

satisfying (3.66, c), (3.76, c), (3.8a, c), (3.9a, c), (3.10) and (3.11). 
Analytic solutions of (3.6)-(3.11) and (4.1) and (4.2) must therefore be of the form 

Q2n-1 

v(r ,z ;  Q) = 2 v[2n-ll(r0, zo) (4.3) 
,=I  (2n- l ) !  

and (4.4) 
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where (r,, z,) are the co-ordinates of the rest state defined in 

yo = {r,, e,, z,l& 6 ro G 8, o 6 8, G 2n, - co < z0 6 01. 
The co-ordinates (r,, z,) are related to ( r ,  z )  by an invertible shifting transformation 

r = r,, 8 = O,, z = zo+h(ro; R), (4.5) 
which maps boundary points z = h in Va into boundary points in yo. The substantial 
derivatives on the right of (4.3) and (4.4) are taken with respect to R at R = 0 with 
ro and zo fixed. 

It is also possible to express the solution in a series of partial derivatives defined 
in Va: 

and 

R2n-1 
v(r ,z;  R) = 2 - d2n-l)(r, z )  

n=l  (2n- I)!  

(4.7) 

where the derivatives indicated by the angle brackets are taken with respect to R at 
Cl = 0 with r and z fixed. Since r = r,, h(2n)(r) = h[2nl(r,); but though the series on the 
right of (4.3) and (4.4) and of (4.6) and (4.7) represent the same functions they are not 
equal term by term. To be more precise, we note that 

d" 
dR@ v["l(1'o,zo) = ---v(r(r,, 20;  Q), z(r0,zo; Q); Q)lQ=o 

an 
dn) ( r ,  2) = mn v(r, z ;  R)la=, 

is a derivative at !2 = 0 with r and z fixed. The two derivative operators ( )(") and 
( )["I are related through the chain rule 

is a derivative a t  Q = 0 with ro and zo fixed while 

Since h[ll = hr31 = 0 by symmetry and by use of (4.8), we can obtain the explicit 
formulae relating ( ) (n)  and ( )["I for n = 1, 2, 3 and 4: 

( )[11 = ( )O), (4.94 

(4.9b) 

(4.9c) 

In general v(n)(r, z )  =+ v ["](To, z,), but 
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In  the computational algorithm for the series solution (4.3) and (4.4), we solve 
problems for the functions v(2n-1)(r0, z,), $(2n)(ro, z,), @(2n)(ro, zo) and h[2"l(rO) defined 
on the convenient reference domain Yo. Then we form the substantial derivatives 
v[2n-11(r0, z,), $[2nl(r,, z,), @[2nl(r0, z,) and h[2nl(rO) using the differentiation formulae (4.9). 
The series solutions (4.3) and (4.4) are then obtained by setting ro = r and 

zo = z - h ( r ; Q ) .  

5. Perturbation equations 
Our main task now is to compute the coefficients appearing in (4.3) and (4.4) up to 

O(Q4). The equations governing these coefficients are nearly the same as those already 
derived by Joseph & Fosdick (1973). We shall not repeat all the details of the deriva- 
tions already developed there. It is necessary, however, to make provision for the 
effects of surface tension, which were not considered in the equations at orders higher 
than two, and to list the equations up to order four whose solution is our main goal. 

The computation of the series (4.3) and (4.4) is greatly simplified by using the 
symmetry properties (4.1) and (4.2). At zeroth order there is no motion and the free 
surface is flat: do] = $[,I = @[Ol = h[O] = 0. At order R, a circumferential velocity 
independent of z appears: $(I) = @(l) = h(l) = 0 and 

The inhomogeneous terms which arise a t  second order may be balanced by a 
gradient (see Joseph & Fosdick 1973). We find that v(2) = $(2) = 0 and a short cal- 
culation (see Joseph & Fosdick 1973; or Beavers & Joseph 1975) shows that 

N - 
s(2) = $2) = a1 A'$> + 2a2 A<1'>2, 

where 

@ stands for the dyadic product and 

A?> = - 2 % ~ ~  (e ,  0 e, + e, Q er), 

A?> = 16ri4 B2er Q er. 

The solution for @ ( 2 )  is (Joseph & Fosdick 1973) 

8 2  

6 rt d 
+ 4( 301, + 2a2) - + C2, 

where C2 can be determined from the condition 

which arises from (3.1 k) and ( 3.10). Hence 

(5.4) 

(5.5) 
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Finally, a t  second order (3.10) becomes 

where hrzJ satisfies one of the pairs of end-point conditions (3 .11) .  

of the fact that v(I)(r,) is independent of zo and that @(l) = 

that ( )131 = ( )(3). Considering the homogeneity of 3, and using 

We are now ready to calculate the solution at order three. When account is taken 
= 0, we find from (4.9) 

= 0 we obtain 
u 

S(3) = @) + 59) + $3) + . . . = sp + sp, (5.8) 

where the s, = S, are given by (2.3). To determine @) and 39) we first note that 
u(2) = 0 leads to A?) = 0. Then A(,) 1 = A(2) 1 = 0 and u(0) = u('4 = 0 yield AP) = 0. It 
follows that S4,") = 0 and 

S(33) = P1A(33)+ 3{Pz(AP)A2)+A2)A(22)) +P3(trAP))AP)}. (5.9) 

Similarly, using do) = u ( ~ )  = 0 and A$") = A$,,) = AP) = 0, we derive from (2 .2b)  for 
n = 2 that 

A(33) = 3{ (grad AP)) u(l) + A?) grad u(l) + (grad ~ ( 9 ) ~  A$"}. 

Substituting u(l) = vWe,, (5.3) and (5.4) in the above equation, we observe that 
A(33) = 0 and compute 

s?) = - 96t-c~ B3(pz +p3) (e, Q e, + e, Q e?), (5.10) 

where PZ and P3 are constants of the fluid of grade three. 

three times with respect to SZ and set SZ = 0, using u ( ~ )  = 0 and (5.10). We find that 
To find the problem at third order, we differentiate (3 .6a ) ,  (3.7a), (3 .8b)  and (3 .9b)  

where 

and 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

( 5 . 1 6 ~ )  

(5.16 b )  

(5.17a, b )  

(5.17 c) 

(5.17d) 
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The solution of the problem (5.16) can be easily obtained: 

(5.18) 

The problem (5.17) is an eigenvalue problem for which the solution can be written as 

where J1 and Yl are Bessel functions of the first and second kinds of order 1,  2, is an 
eigenvalue of 

(5.19 b)  Jl(R,a)Y1(RnG) -J1(R,&)Y1(Rna) = 0, 

A 

[ J 1 ( ~ , ~ ) Y l ( ~ , r o ) - J l ( ~ , r O ) Y l ( ~ , ~ ) ] d r O  

We note that when dh[21(ro)/dro has been determined @)(r0,  zo) is given explicitly by 
(5.19). 

The secondary motion, which appears first at  fourth order, arises from the torque 
generated by vp)(ro,zo).  To begin with, we use the results that d2) = 0 and that 
OW(r0)  is independent of zo in Yo to find from (4.9) that ( )r41 = ( Using the horno- 
geneity of S, and the rest-state solution, we establish that 

N - - - - 
S(4) = s6") + $4) + $4) + . . * = s6") + SB"' + 9 4 )  4 2  (5.20) 

where S, = S, are given by (2.3). Using A$') = AP) = Ap) = 0 and do) = d2) = 0, 
we have A?) = 0. Then it follows immediately from 

that AP) = 0. 

collecting all the results established in the last paragraph, we find 

A$) = A(1) = A(2) = A(3) = A(3) = 0 
3 3 2 3 

We differentiate (2.3b, c,  d )  four times with respect to s1 and set R = 0; then, 

Se) = m1 A'$) + 4a2 (A?) A?) + A?) A?)), (5.21a) 

$4) = 0, (5.21b) 

SP) = 6y3 + 1 2y4(Ap) A(,')' + A(1)2 1 A(2) a )  

+ 6y5(tr Ap)) A?) + 1 2y6(tr Ap)) A?)' + 1 2y8( tr  Ap) Ail)) A?), (5.21 c) 

where Ai3) = grad d3) + (grad u ( ~ ) ) ~  (5.22 a) 

and 

A'$) = 4{(gradA?)) u(l) + (grad A?)) u(~) 
+ A(13) grad u(1) +A?) grad d3) + (grad u(~')~ A?) + Ai3)}. 

(5.22 b)  
Since u(3) = v(3)(r0, zo) e,, we may write 

v(3) 

r 
grad u(3) = e, @ Vd3)  - - e, @ e, (5.23) 
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and thus 

Substituting u(1) = v(l)(ro)ee, u(3) = v(3)(r0, zO)ee, (5.23) and (5.24) into (5.223)) we 
find that 

(5 .25)  
AP) = - - ( e , O ~ v ( 3 ) + 0 v ( 3 ) B e ~ - ~ e , B  1 6B 2v(3) e,) .  

r; 

Hence we may compute from (5.3), (5.21 a), (5.24) and (5.25) 

Finally, from (5.3) and (5.4), we reduce ( 5 . 2 1 ~ )  to 

and thus conclude that 

By symmetry, we have v[41 = d4) = 0. Using the resultsu(0) = q(l) = d2) = q(3) = 0,  
we obtain 

(5.293) 

$(4)(6) zo) = $(4)(S, zo) = 0) 

a$(4)(6, zo)/aro = a$("(&, Zo)/aro = 0, 

a 9 ( 4 ) ( r 0 ,  o)/aro = - P$(4 ) ( r0 ,  O)/az ;  = 0, 

( 5 . 3 0 4  

(5.30b) 

( 5 . 3 1 ~ )  b )  

a$(4)/arO = - 82$(4)/a~;+ 0 as z0+ - 00, ( 5 . 3 2 ~ ~ )  b) 

where to  derive (5.31b) and (5.323) we have made use of (5.13) and the conditions 
a2$(4)(r0, O)/ar; = 0 and a2$(4)/ar;-+ 0 as zo+ - 00. Also, 

(5.33) 
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where hL41 satisfies (3.1k) and one of the conditions (3.11). Using the component 
expression for S4), we may rewrite (5.29a, b )  as 

and +-- (5.34 b)  

Elimination of W4)  from (5.34a, b )  leads to 

a V ( 3 )  v(3, 
( ~ L d p ~ $ - < ~ )  = - 8 2 (g (al + az) (- - 7) + p ~ ( ~ ) v ( ~ ) ) ,  (5.35) 

azo rf ar0 

r - a (--) 1 a( 1 +-. a2( ) p( = Oar, ro ar0 82; 
where 

We remark that (5.35) with boundary conditions (5.30), (5.31) and (5.32) forms a 
well-posed inhomogeneous Stokes-flow problem which is uniquely invertible for 
9H4)(r0, zo), It is interesting that I,?-(~) is  determined when the material constants for the 
Jluid of second grade are known. 

Given ~,b(~), we may compute W4)(r0, zo) up to an additive constant by integrating 
(5.34). We decompose W4) into two parts: 

@(4)(r0, zo) = @4)(r0) + Qp)(ro, zo). 

Then from ( 5 . 3 4 ~ )  we have 

d @ p  v(l)v(3) * -- - 8 p ~ - 8 B ( 2 a 1 + a 2 )  
dr0 TO 

P 3 
( P 2  P 3 )  8') ( 1 B4 

'$)) - 384-- + 16Ba2 rg ar, -10752(7 ,+y4+y ,+$76)~ ,  (5.36) 

a@) 
320 

-= 

If we also decompose hL41 into hBl+ hfl so that 

and 

T 
- (ro hf]')' -pghk41 + 
YO 

= 0 (5.38 a )  

(5.38b) 
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then the integration constants for @p)(ro)  and @p)(ro ,  2,) can be determined from the 
conditions 

and 

(5.39u) 

(5.39b) 

which arise from the constant-volume condition and (5.38), and incorporate the fact 
that 

We note that @p), like @4), and hence hp),  can be determined from the material 
constants of the second-grade fluid. But in evaluating 02) and hp), we need not only 

I n  summary, we have found that it is possible to  express the series solution (4.3) 
p2 + p 3  but 73 + 7 4  + 7 5  + $76.  

and (4.4) up to terms O( Q4) as follows: 

v(r ,  z ;  Q) = Qv(l)(r,) + - Q3 (vl (3) (r ,  ) + J 3 )  (Yo,  z,)} + @a5) (5.40) 3! 

(5.41u, b, c) 

where ro = r and zo = z -h(r ;  Q). The coefficient d 1 ) ( r 0 )  is given by (5.1), W ) ( r o )  by 
(5.6) and vf')(r,) by (5.18). It is also easy to  solve (5.36) and ( 5 . 3 9 ~ )  for @>14)(ro). The 
functions @(2)(ro), v ~ ) ( r 0 )  and @?)(r,,) may be regarded as arising from the perturbation 
of the z-independent viscometric flow and as producing the changes in the free surface 
h[21(ro) and hi4J(r0). The functions vp)(r,, z,), $(4)(r0, z,) and @p)(ro, z,) may be regarded 
as arising from the perturbation of the z-independent viscometric flow and as pro- 
ducing h!jl(ro). The solutions of the boundary-value problems for ha,  $), $%(4), hl;'] and 
hi4] are more difficult. 

7P4)(r0, 2,) 

h[;'l(r,) + h!jl(r,) 

and ap) ( r , )  + @$)(r,, 2,) 

6. Dimensionless representation of solutions 

do this we introduce the following dimensionless quantities: 
The series solution up to order four may be expressed in dimensionless form. To 

2 
( t ,  y )  = (r,, zo) ,  a < t < b,  y < 0,  

6 - U  

r =&/6,  u = 27/(1--7), b = 2/(1-7), 

A = -? ,12/(1-~2) ,  B = 472/{(1-v2)(1-7)2}, 

pg&2 - pg(S - &)2 s=--  
Ta2 4T ' 
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Rl = 1, 

R, = 4(3a1 + 2a2)/(pB2) = 4/?/@a2), 

R3 = 4(@1+ a,) / (p@) = 4&/(pa2),  

R4 = R, R3, R, = Rg. 

We also introduce three parameters, each with the units s - ~ :  

n; = g / a  > 0, 

K2 = (3a1 + 2a2) / {336 (~3  + 7 4  + ~5 +$rd> = P/(336?).  

K I .  = p/{I6(P2 f P 3 ) )  = p/(16fi) 

and 

Then the series solutions (5.40) and (5.41) can be written as 

We have used the principle of superposition, as far as possible, to reduce the solution 
to the computation of functions of 7 and S alone. For fixed values of the group p g / T ,  
the prescription of 7 and S is equivalent to prescribing the radii of the inner and 
outer cylinders. Hence when p g / T  is fixed, the dimensionless functions defined by 
(6.1 )-( 6.4)  are independent of material parameters. The dimensionless functions are 
given in terms of the dimensional functions introduced in 9 5: 
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-= gh'lp) H2,(t) + R2H2,( t ) ,  

Q2gh',"l(ro) Q2 3 Q2 

a2 
= K,i=l - x B f A 4 ( ( t ) + z R 2 8 4 4 ( t ) ,  

2 h[41 r ) Q2 
5 *' ( = -  RiH4((t) 

a 2  Q&=, 

Q2Pk' (4) (ro ,  a2 4 

R&=l 
and = - x RiY,(t, y ) .  

The following functions, which are independent of y, may be obtained explicitly 
without resorting to numerical or approximate methods: 

(6.5) 

(6.6) 

a 

R1(t,7) = -- B3( l  a 2+- t a2+b2 a4b4 t -  a4+b4+a2b2) a4b4t ' 

A2 ( a a b2-a2 
a2 ; b2) + 4 f 2 B  ( t b2 log ( b / a )  

02,( t ,q)  = t2-- - log-- 

- B" (A - 210g (b/a)) -x21, (6.7) 
a2 t2 b2-a2 

@22(t, 7) = B2 (1 - 2) - 2?22, (6.8) t4 a2b2 

6 4 1 ( t , 7 )  = E ( 2  ( L - L )  - 4(b2 + a2) ( 2-- a2 ; b2) 
a2 t4 a2b2 b4a4 

8(a4 + b4 + a2b2) t b2 log @/a) 

B4 4 1 a2+b2 8(b2+a2) ( t b210g(b/a) +*) 

a4b4 t2 b2 - a2 

+ a4b4 (log; - b2 - a2 

+>(3($-=)-  b4a4 log;- b2 - a2 

- 4(a4 + b4 + aB2) (--210g(b/a))]-241, 1 

4(a4+ b4 + a2b2) 2(a4 + b4 + a2b2) 

(6.9) 

(6.10) a4b4t4 + a6b6 ) - 242, 

(6.11) 
12 4(a4+b4+a2b2) 

a6b6 

(6.12) 
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2 
x m n  = S(b2 - a2) 

and the functions azi(t) + SZi and 64i(t) + $4i satisfy (3.1 k). 
If the height-rise functions Hmn(t) are given numerically, then the Fourier-Bessel 

coefficients Bin given by (6.17) and the biorthogonal series coefficients given by (10.9) 
can also be computed numerically. The remaining parts of the solution can be expressed 
analytically. 

First, the functions H2!(t, 7,s) and H2,(t, q, S) satisfy 

' 
dH2i -AH2, + S(D2i(t) = 0, i = 1,2, rz ( t z )  

and one pair of the four conditions (3.11). 
The functions V3i(t, y ,  7,s) satisfy 

0 on y =  0, 
aV,, 6BdH2, -+--= ay t 2  dt 

(6.13) 

(6.14a) 

(6.14b) 

( 6 . 1 4 ~ )  

aV3i/a~+o as Y+-CO for i = 1,2.  (6.14d) 

The solution of (6.14) is 
W 

& i ( t , ~ , q , S )  = C Binexp(hny )g l (hn t ) ,  (6.16) 

where gl(Ant) = Jl(hna)Yl(h,t)-Jl(hnt)Y,(h,a), g1(hnb) = 0 ( 6 . 1 6 ~ ~  6) 

n = l  

and 

The constants hn(q) depend on 7 alone but the coefficients Bin(?, S) depend on q and S. 
The functions Yqi(t, y ,  7, S )  (i = 1,2,3,4)  satisfy 

L2Y4i+-((t,y,7,$) aFi = 0, L( ) = t -  a (W -- 1) +- Ti.', 
at t at BY 

'F4i = a'F4i/i3t = 0 a t  t = a, b, 

'Fqi = a2yP4i/ay2 = 0 on y = 0, 

'Y4+-t0 as y-t-co. 

(6.18a) 

(6.18 6 )  

( 6 . 1 8 ~ )  

(s.isa) and 



The constants of integration for <D,<(t, y ,  7, S )  are to be determined so as to satisfy 
the preservation-of-volume condition (3.1 k) : 

(t 2 (t, 7, S ) )  + S /  t <D4i(t, 0,7, S )  dt = 0. 
a a 

(6.19) 

The functions I?&, 7, S )  and H4Jt, 7, S) satisfy 

A +$ (t+) -SI?,+S@,(t, 7) = 0, i = 1,2,3,4, (6.20) 

2a3 a 2 ~ ~ ~  

t atay 
t;it(tz)-SH4,+S 1 d dH4, <D4i(t,0,7,S)+--(t,0,79S) = 0, i = 1,2,3,4, ( 6 . 2 1 ~ )  

i$(t%)-SH,+S@45(t,0,7,S) = 0 (6.21b) 

and one pair of the four conditions (3.11). 
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Two remarks on the dimensionless representation of the solutions are appropriate 
a t  this point. First, the computation of terms in the perturbation solution proceeds 
sequentially in the order given in the following flow diagram : 

We do not believe that the choice of dimensionless parameters embodied in (6.1)- 
(6.4) is always the best possible. Our primary aim was to  reduce the whole solution 
to a sum over component functions which, as far as possible, are independent of 
material parameters and depend on the minimum number of geometric parameters. 
We found that some of these functions (Vl(t), gl( t ) ,  @)2i(t) and &4i(t))  depend on 7; all 
the other component functions depend on both 7 and S. The S dependence can be 
traced to the height-rise equations a t  orders two and four. 

A second remark concerns the choice for the geometric parameters. A better choice 
than the one made here uses the shear rate a t  the inner cylinder rather than R as an 
expansion parameter when 7 is near one. For any fixed value of R, no matter how 
small, the shear rate at ro = B , 

(6.22) 

tends to infinity as 7 + 1.  The perturbation solutions are then represented as follows: 

Q K ( t )  = q l ) ( t ’ ) ,  RW2i(t) = 2 2 @ ( 2 i ) ( t ’ ) ,  R2H2i(t) = C2H(2i)(t‘), 

Q3V,i(t, y) = C353i)(t’,y’), Q4Y4i(t,y) = C4Y(4&’,?/’), 

Q4Q4Jt, y) = C4@(4i)(t‘, y’), R4H4,(t) = C4144i,(t‘), etc., 

where ( t ’ ,  y’) = ( t /a ,  y /a ) ,  1 6 t’ < 1/7. For example, Q K ( t )  = *’?( -72t‘+ l / t ’ ) .  

7. Some properties of the solutions 
It is almost impossible to  give a complete account of all of the superpositions 

possible among the functions of 7 = a/6 and 8 = pgg2( 1 - T ) ~ / ~ ! P  which are defined in 
(6.1)-(6.4). To simplify this problem we have used the value 

pg/T = 28.25 cm-2 (p = 0.89g (3111-3, T = 30.9 dynes cm-l) (7.1) 

which Beavers & Joseph (1975) report for a sample of STP a t  room temperature. This 
parameter is nearly constant over wide ranges of temperature and has nearly the 
same value in the different polymeric oils used in our experiments (STP-1, 28.25; 
STP-2, 27.63; TLA-227, 28.43). With the value of pg/T given, all of the component 
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functions which enter, by superposition, into the final solution may be computed 
when the radii iZ and 8 of the inner and outer cylinders are specified. To display some 
of the properties of the solutions we have chosen the following three sets of physical 
parameters: 

(i) (a, 8,s) = (0.635, 6.35, 231), 

(ii) (a, 8,s) = (4, 8.5, 143), 

(iii) (a, 8,s) = (6,8.5, 44), 

where B and 6 are in centimetres. In  the experiments of Beavers & Joseph (1975) the 
radius of the outer cylinder was fixed at 15-25 cm and the radius of the inner cylinder 
was varied, one value being 0.635cm. We shall show that for a fixed value of a the 
climb near the inner cylinder is independent of 6 for values of 8/a greater than about 5. 
Thus we can compare the theoretical results from (i) above with the corresponding 
experiments of Beavers & Joseph (1975). 

The four viscoelastic constants which enter our solution up to order four also appear, 
but only as coefficients in the superposition of the component functions. 

A certain amount of numerical work of a routine kind is required in the computation 
of the component functions. The height rises a t  orders two and four were computed 
numerically using Runge-Kutt,a integration. The integrals defining the coefficients in 
the series solutions a t  orders three and four were computed numerically using Simpson’s 
rule. These computations are fully described in the thesis of Yo0 (1977). I n  that thesis 
the interested reader will find extensive tables of computed values from which we 
have constructed the graphical representations given here. 

8. The rise in height at second order 
Equation (6.13) can be solved by the standard Runge-Kutta method for the 

zero-slope boundary conditions H&) = H;,(b) = 0 for i = 1,2.  In  fact, among the 
four allowed conditions (3.11), only the flat-slope condition gives a solution which is 
not singular a t  the contact line [see Sattinger (1976) and the discussion following (9.3)]. 

The height-rise problems for H2,(t) and H2,(t) depend on r j  and S. We first consider 
the effect of changing S when 7 is fixed. We may regard S as a surface-tension para- 
meter; when T = 0 ( S  = co), H2,(t) = QDzi(t)  and, when T = 00 (8 = 0), H2i(t)  = 0. 
Without exploring further the details of the variation of H2i(t, S) with S, we assert 
that lH2,(t, S)l is an increasing function of S for most t E [a, b] such that H2{(t ,  0) = 0 
and H2i(t, 00) = @2i( t ) .  

We next consider the effect of varying r j  when S = pg(8 -B)2/4T is fixed. In experi- 
ments this type of variation is obtained by keeping the gap size fixed and varying the 
radii of the cylinders; i2+ 0 corresponds to a rod rotating in an infinite sea of fluid. When 
S is fixed the inhomogeneous term S@2j ( t ,  7) in (6.13) varies with 7 and has mean value 
zero. For small values of 7, @21 and @22 are approximately given by the terms which 
are proportional to B2 in (6.7) and (6.8). For example, 

The term in the brackets tends to a2/t2 when 7 is small and d / t 2  is a decreasing positive 
function with maximum value one, when t = a. I n  addition, (D2i differs from zero 
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(a )  
0.2 r 7 

-0.2 

-0.4 

0.6 r 1 

o'2 0 L-J-k-J 
-0.2 ic- j 

I I I - - 
0.221 1.277 2 . 2 7 2  1.778 2.778 3.778 4.8 5.8 6.8 

FIGURE 1 .  Height-rise functions H z l ( t ,  7, S) and H,,(t, 7/, S) at second order satisfying (6.13) with 
zero-slope boundary conditions, for three pairs of cylinders: 

f t r 

(a) (b )  (4 
6 (cm) 0.635 4.0 6.0 
l)(cm) L. 6.35 8.5 8.5 
7/ ( = lip) 0.1 0.4706 0.7059 
S 23 1 143 44 

The height of climb is given by h = &fiz$zg-l[Hzl(t) + R,H,,(t)] + O(fi*).  Tho fluid is assumed to 
be the same as the STP sample used by Bertvers & Joseph (1975), with p g / T  = 28.25cm-,. When 
S is large and 7 is small, H , , ( t )  and H,,(t) differ sufficiently from zero only for t close to a ,  while 
when S is large a,nd 1-7 -+ 0, H , l ( t )  and H,,(t) are odd functions with respect to the gap centre. 

substantially only when t is close to a. For q near to  one, QZi( t )  is nearly an odd function 
with respect to the gap centre. Since H,,(t) N Qzi(t) when S is large and t is outside the 
capillary boundary layer on the cylinder walls, we may expect that  when S is large 
and 7 is small H,,(t) differs substantially from zero for t near a, and that when S is 
large and 1 - 7 is small H,,(t) is close to  an odd function with respect to the gap centre, 
These features of H,, and H,, are evident in the graphs shown in figure 1. 

Our main observation is that  when â  is small most of the climb occurs near the inner 
cylinder and that this climb depends very weakly on the radius 6 of the outer cylinder. 
Our calculations show that the climb near the inner cylinder is independent of the 
position of the outer one when 7 < 3 .  I n  figure 2, we show that when ii is fixed and 6 
is increased the height rise nea,r a  ̂ becomes independent of 6 when d l 6  < &. The height- 
rise curves for all values of 6 a t  fixed values oft? and p g / T  are barely distinguishable 
from one another and from the limiting curve for 6+co shown as figure 13 in the 
paper of Beavers c1: Joseph (1975). 
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0.3 

A - + 0 .  
A 

t 0 
A 0 .  

0 I I I I I , Y  I I I I A I  I 1 ~ 1  = I . L  1 

-0 .11 

-0.2 

+ 
i 

+ 
+ + + + 

A 
A A 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

r-2 (cm) 

FICUHE 2. Height rise h = +LPh[2'(ro) at second order for a fixed inner radius 2 and various outer 
radii?). h [ z l ( ~ o )  = i?gS-' { H Z i ( t ,  7, S )  +R,H, , ( t ,  7, S)};  w = 2.9revs-'; & = 0.635cm; B = 1.Ogcm-l; 
- , experimental curve (Beavers & Joseph 1975). 

0 0 0 A + 
1) (em) 9.525 6.35 3.175 2.54 1.905 1.27 
t 0.0667 0.1 0.2 0.25 0-333 0.5 
S 559 231 45.6 25.7 11.4 2.85 

Solutiops with small xalues of 9 (large values of: when 6 is fixed) tend to a limiting value for 
7 = 0 (ti + co) when aft) < 4 (cf. figure 13a of Beavers &Joseph 1975). 

h 

Figure 3 shows how h[21(r) = $2g-1[H21(t, 7,s) + R, H2,(t, 7, S ) ]  varies when 6 is fixed, 
8 varies and S is large. The sensitive variation of the rise curve with 7 = a/6 is fully 
described in the figure caption. We draw attention to the following remark. When 
1 - 7 is small it is desirable to fix the rate of shear j? given by (6.22) rather than the 
angular velocity R. The series solution proceeds in powers of 2 and h(r) = @,(r) 22, 

where 
'2('77) = ih[21(r,7) (1-7)2(1f7)2 

tends to zero with 1 - 7. The nature of the difference in the variation of h,(iz, 7) and 
h[21(i2, 7) is made dramatically evident by the graph in figure 4, where it is shown that 

h2(@, 0.3) = h,(&, 0.6) = h2(8, 1) = 0. 

In fact, h,(r, 1)  z o for iz < r < 6. 
The analysis of the variation of the climb with 7 just given may help to expIain 

the seemingly confusing (but actually reasonable) experimental results of Peter & 
Noetzel (1959), in which they claim to have reduced to zero the height of a climbing 
fluid in a Couette apparatus by floating the climbing fluid on a bed of mercury. Their 
figure 3 shows that they did not observe climbing of the pyroxyline solution in butyl 
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L I 

n.] i 0 . 1  L Y n.7 I- 

I I I I I I I 1 I ]  

0 1 2  3 4 5 6 7 8 
r (tin) 

FIQUIZE 3. Weight;risc coefficient W ( r )  = h2g-l [Hal ( t ,  7, S )  + R,H& 7, S ) ]  a t  second ordcr for 
fixed outer radius h and various inner radii a. h - &R2h[*1; /? = 1.0g cm-l. 

(4 (6) (4 (4 (4 (f 1 (9) 

h (cm) 1 2 3 4 5 6 7.5 
S 398 299 214 143 86.6 44.2 7.07 

Tho maximum rise is aot always at the innor cylinder. For intermediate valuos of 7 ( = a/;) the 
maximum r1se is in the interior. For small values of 7, the maximum rise is at  t!ie inner-cylinder 
wall and the rise in tho rest of the gap is small. For small values of 1 - 7 the distribution is anti- 
symmetric with respect to the gap centre. The magnitudc of the rise h - &K%, tends to zero with 
1 - 7  (soe curvos for h,(r) in (f)  and (g), and he(&) in figure 4) .  -, x 102(cms2); ---, h,  x lo2 
(cmsl). 

acetate between concentric cylinders (iz = 10*97cm, 8 = 16cm) for various small 
values of 0. The inner cylinder was situated in a mercury layer a t  the bottom of the 
container to  produce a state of pure simple shear in the body of thc test solution. They 
interpreted their observations to mean that the Weissenberg effect is either absent or 
of smaller order in simple shearing flows. Their observation is correct but their inter- 
pretation is not. They did not know that the climb is very sensitive to  7 and also to 
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FIGURE 4. Variation of height-rise coefficient at r = 6 as a function of ~ ( 6 )  for fixed values of 
= 8.5 em, /? = l.Ogcm-l and p g / T  = 28.25 

n2 
h = -Wl (mm) 

Rev/min 2! 

2.84 
4.57 
7.42 
11.35 
18.20 

- 0.006 
- 0.015 
- 0.039 
- 0.092 
- 0 2 3 6  

TABLE 1. Theoretical height rise ofASTP motor-oil additive on the wall of the inner cylinder for 
6 = 10.97 em, h = 16 cm and various small values of R. 

the size of 8, the inner radius (see figures 3 and 4). In  fact, for STP in the apparatus 
used by Peter & Noetzel, we compute, from (6.3) and (6.13), an almost negligible rise 
in height (see table 1).  

Their observations concerning the climb on non-circular cylinders also has an easy 
explanation in terms of the induced spatial variations of shear. 
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9. Circumferential velocity at third order 
The circumferential velocity at third order is given by terms proportional to 0 3  in 

(5.40). The solution splits into two parts; one part arises from the perturbation of 
viscometric flow, which is independent of (or y) and is proportional to f i ,  and the 
other part is driven from the free surface and depends on z and on /?. This z-dependent 
part of the circumferential velocity is the mainspring of the secondary motion; it is 
responsible for the vertical stratification of inertia and normal stresses, which gives the 
torque generating the secondary circulations. 

The vanishing of the tangential component of the shear stress on the free surface 
implies that (1.2) holds: 

A t  fist order (9.1) is satisfied identically because h[O](r), h[’l(r) and S$) are identically 
zero. At third order this equation becomes 

8,- h’(r) S,, = 0 a t  z = h(r; Q). (9.1) 

s$) - 3h[21’(r0) S$ = o a t  zo = 0. (9.2) 

a ~ ( ~ ) / a ~ , + h [ ~ l ~ ( r ~ )  6B/r i  = 0 at zo = 0, (9.3) 

Since 8;;) = p a ~ ( ~ ) / a z ~  and S:,$ = ,u(av(l)/aro-v(l)/ro), (9.2) takes the form 

which can be identified with (5.13). Now a t  ro = 6, d3)(r0,  zo) = 0; hence 

av(3)(a^, zo)/azo = 0. 

But (9.3) shows that ad3)(6, zo)/azo =I= 0 unless hr21’(6) = 0. If h[21‘(6) 9 0, we can get a 
solution which satisfies (9.3)) v(~)(&, zo) = 0 and all the other conditions but fails a t  the 
point (ro, zo) = (a, 0). This incompatibility of boundary data is true of (9.1) without 
perturbations when the fluid is Newtonian and it would appear to be related to the 
unsolved problem of adhesion of the contact line. In  any event, we are now con- 
sidering h[21f(a^) = 0, where there is no incompatibility and the solution, at least in the 
Newtonian case, is regular even a t  the corner (Sattinger 1976). 

Equation (9.3) shows that d3)(r0 ,  z,,) is an increasing function of zo for zo near zero 
a t  each ro for which h[zl‘(ro) < 0. In  the typical climbing configuration when 7 is small, 
this will imply that ~ ( ~ ) ( r , ,  0) is larger than the viscometric value vi3)(rO) to which v(3) 

tends when z,, tends to -co over the whole of the climbing bubble. We may write 
(9.3) as 

Equation (9.4) implies that the circumferential velocity 

is larger than its asymptotic, viscometric value 

wherever ld2l’(r0) < 0. Since vi3)(a^) and vi3)(&, zo) both vanish, v(a, zo; Q) = Qv(1) (a). 
We turn next to a description of the functions giving the third-order approximation 
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FIGURE 5 .  Plots of Vl(t, 7) [ = u(1)(rO)/C22] for the three cylinder pairs of figure 1; Vl(t, 7) is given 
by (6.5). These graphs show that the primary shearing motion reduces to potential flow as 7 -+ 0 
and to linear shearing motion as 7 -+ 1. 

(6.1) to the circumferential component of velocity. The first-order contribution 
q(t, 7) is given by (6.5), and graphs for three different values of 7 are shown in figure 5.  
For the third-order contributions, q,(t, 7 ) isgiven by (6.6), V31(t, y, 7, S) and V32(t, y, 7 , s )  
are given by (6.15), and the eigenvalues h,(q) are given by (6.16). Graphs of f&, V31 

and V3, evaluated on the free surface zo = 0 are shown in figure 6 for the same three 
values of y as figure 5. The computation and asymptotic properties of A, are discussed 
in appendix E of Yo0 (1977). The Fourier-Bessel coefficients Bin, which are given by 
(6.17) and which are needed for the eigenfunction series expansion, depend on S 
through dH, , ( t ,q ,S) /d t .  The values of dH2,/dt were obtained as a by-product of the 
numerical method applied to solve (6.13). Thus the integral on the right of (6.17) can 
be computed numerically using Simpson's rule. The first 40 values of A,(7) and Bin(7, 8)  
for three different values of (y, X) are given in table 22.2 of Yo0 (1977). 

The accuracy of this computation can be checked by establishing the convergence 
of the partial sums on the right of (9.5) to the edge data on the left: 

6BdH2, --- N Bi,h,%?I(A,t). 
t2 dt (9.5) 

Yo0 (1977) showed that the convergence is faster when 1 - 7 is small and slower when 
7 is small. In  all cases, however, there is convergence with less than 60 terms. 

Finally, we consider the total circumferential velocity on the free surface zo = y = 0: 

8 a3 
w(r, h; a) aaq(t) + 3 @ [V31(t, O )  + R2 V32(t ,  O ) ]  

- 8v'J)(ro) +% (vp)(ro) +vp)(ro, 0)). (9.6) 

Asanexamplewechoosethevalues8 = 0*635cm,q = 0.1,S = 231andB= 1.0gcm-l. 
The value of u(r, h; a) depends on K, ( = p/{l6(/3,+,8,)}) and a. In  figure 7 we have 
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FIGURE 6. Components of the third-order correction to the circumferential velocity evaluated on 
the free surface zo = 0 (y = 0) for tho three cylinder pairs of figure 1. V,, is defined by (6.6) while 
V,, and V,, are defined by (6.15). In the limit as 7 + 1, all three components are symmetric with 
respect to the centre-line of the channel. 

plotted (9.6) for Q = 4revs-l and different values of ,!? ( = p2 +,8,). Positive values of 
,2 mean that the fluid is shear thickening when the shear rate F is small. Negative 
values imply a shear-thinning fluid. The circumferential velocity increases all over the 
climbing bubble (hL2l’(r0) < 0 )  in all fluids except those which are very shear thinning, 
i.e. in all fluids except those with large negative values of,!?. Measurements reported by 
Hoffman & Gottenberg (1973) indicate that this property of the solution may be 
easily verified in experiments. Their figure 7 shows that the measured values of the 
angular velocity of polyisobutylene in cetane in a concentric-cylinder apparatus with 
ii = 1.267 cm, 8 = 3.827 cm and Q = 47r rad s-l are larger than the Couette-flow values. 
The distribution curve of the measured values (when rescaled by multiplying by the 
radial co-ordinate a t  each point to give the circumferential velocity distribution) is 
like the one which the present theory would predict for a value of ,i2 which is negative 
but not large in magnitude. Their figure 3 shows that the polyisobutylene solution is 
shear thinning and the thinning seems to be moderate a t  low rates of shear. 

Hoffman & Gottenberg also present an argument to show that the circumferential 
speed a t  the free surface where h’(ro; Q) < 0 is larger than the z-independent value a t  
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FIGURE 7. Distribution of the total circumferontial velocity V ( T ,  h;  a) on the free surface up to 
thirdorderforcase(a) offigure l ; v ( r ,h ;  a) = Q&)(r0) + (a3/3!) [@(r,,) +v$3)(~o,0)].G = 0.635cm; 
Q = 0.1; 8 = 231; p =  l.Ogcm-l; ,u = 150P; = 4revs-l. 

(a) ( b )  (4 (4 
,6 (g s om-1) 0.023 0 -0'0117 - 0.057 

Curve ( e )  shows the primary Couette flow Qu(l)(r,) .  Only those fluids with large negative values 
of,6 (shear thinning) experience a decrease in speed duo to nonlinear effects at third order. 

I I I l l  I I I I 1 1 1  

0 0.2 0.4 0.6 0.8 1 .o I .2 
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FIGURE 8. Distribution of the total viscometric flow W ( T ,  -a; Q) up to thiid order as z + - m  
for the conditions of figure 7; W(T, - CQ; a) = a&)(r0) + ( n3/3!) z):')(r0). When ,2 = 0, 

v( r ,  - 03; a) = 

thus ( b )  represents the primary Couette flow. 
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the same r which prevails deep in the fluid. They conclude, incorrectly, however, that 
this z-independent field is given by Couette flow (p. 476) rather than by the z-indepen- 
dent viscometric flow, which differs from Couette flow at order three by the term 
vi3)(rO). The difference between the two flows is illustrated in figure 8 for the values of 
I; used in figure 7. 

10. Secondary motions 
Secondary motions a t  fourth order are governed by the stream function $(r, z; Q) 

defined by (6.4). The component stream functions Y4i(t,y, 7,S)  satisfy (6.18). The 
vertical stratification of inertia and normal stresses, which produces the torques and 
drives the secondary motions in the planes 8 = constant, is embodied in the driving 
term aFi/8y of ( 6 . 1 8 ~ ) .  

We solve (6.18) by the method of biorthogonal eigenfunction expansions discussed 
in the appendix. It is first necessary to reduce (6.18) to an edge problem in an annular 
trench. In  preparation for this reduction, we write 

A 

and set 

where Lz94i+aF,/ay = 0, (10.3 a) 

qdi = aY4,/at = 0 a t  t = a, b (10.3b) 

and L2\Ip4, = 0, ( 1 0 . 4 ~ )  

vPdi = aY,Jat = 0 at t = a, b, (10.4 b )  

Y4i+Y4i = a2(Y’4i+Ydi)/ay2 = 0 on y = 0, (10.4~) 

Y, +‘J!4i-+ 0 as y-+ - 00. (10.4d) 

Y,,(t, Y, 7, 8) = Y4&, y, 7 9 4  + 9 4 &  y, 7,4, (10.2) 

Y 

A 

h A 

A h )  A -  

A -  

We find that 
/ m  

where 

with 

t 
2 B 1 (  a4 A, a 

A t3 
a4 An El&) = - -@1(A, t)  - - - t l0g-q(An t )  + 
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(10.6b) 

(10.6d) 

The canonical edge problem for '?4i is defined by (10.4). Using (10.5), we may 
rewrite the edge conditions ( 1 0 . 4 ~ )  as 

The solution of this Stokes-flow edge problem is the same as the one given by Yo0 & 
Joseph (1978) when the data vector, with components f ( t )  and g( t ) ,  is replaced by 
(10.7). Therefore 

where q5im)(t) = A!")tJ,(P, t )  + Aim)t Yl( P, t )  + Ac,")t2 J,( P, t )  + AL'W &(P, t )  

are biorthogonal eigenfunctions with constants AjZn) and complex eigenvalues P, 
chosen (uniquely) such that 

#$"'(a) = $$"'(b) = d$$m)(a)/dt = d$!"'(b)/dt = 0. 

The first 30 values of P,(y) for three different values of y are given in table 23.1 of 
Yo0 ( I  977). In  table 2 we have given the first five values of PnL(y) for three values of 7. 

The constants Ci, are chosen to represent the edge data at  y = 0: 

(10.8) 
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m Re (P?n(1/10)) Im (P?n(l/lO)) 

(4 
1 2-20833076225827 1~04119174170651 
2 3.83365774050931 1.3 169644361 61 35 
3 5.43106064681608 1.499 120 14659564 
4 7*01699724709610 1.83478530623688 
5 8.59721592766949 1.74244686387722 

(b )  

rn Re (Pn,(4/8.5)) Im (Prn(4l8.5)) 
1 2.12450992720923 1.11492116235026 
2 3.76107821933820 1-37920072184694 
3 5.36548413171664 1.54850353040378 
4 6.95735569305069 1.67405570026 184 
5 8.51282244577007 1.77407454902532 

(4 
m Re (P?n(6/8.5)) Im (%(6/8.5)) 
1 2.11033277215611 1~12312200135300 
2 3.7514971 1564217 1-38332821070635 
3 5.35523055726337 1.55098791095229 
4 6.95153303253042 1.67571835529977 
5 8*53796706049070 1-77526802935806 

TABLE 2. The first five values of P,,,(,q) for the three different vdues of g. 
(a)  g = 1/10. ( b )  g = 4/8.5. (c) g = 6/8*5. 

Application of the biorthogonality conditions (A 13) to (10.8) and integration by parts 
lead to 

where 

We note that the edge data (10.8), and thus the integrands in (10.9), are expressed in 
series forms. We simpIy truncate these series after N terms or, for small vaIues of 
7 (e.g. 7 = &), take the Cesaro sum over N partial sums of those series, where N is 
large enough to ensure that each series is well represented. The integrals in (10.9) are 
then evaluated numericaIly using Simpson’s rule. The first 30 values of Cim(q, 8) 
(i = 1,2 ,3 ,4)  for three different values of (7,s) are given in table 23.2 of Yo0 (1977). 

Since the edge dataf(t) and g( t )  are (7°C - 1 , 1 ]  andf(a) = f(b) = f ’ (a )  = f ’ ( b )  = 0 the 
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FIGURE 10. Contours in the dimensionless reference domain of the components (10.10) of the total 
stream function Y4(t,y) = R,Y,,+R,Y,,+R,Y,,+R,Y,,. The contribution R,Y,,+R,Y,, is 
associated with the vertical stratification of inertia represented by tho penultimate term in (6.4), 
while R3Y4, + R, Y4, is associated with the vertical stratification of the normal stress represented 
by the last term in (6.4). Since the sign of the corner eddies of Y,, and Y,, are opposite to those of 
Y4, and YF,,, superposition of solutions can lead to widely different map8 of the contours of the 
total stream function. q = 0.635/6.35; S = 231. 

convergence theorem of the appendix holds and the series (10.8) eventually converges 
uniformly and absolutely a t  a rate better than the numerical series Xn-2. In figure 9 
we give some representative examples of how the biorthogonal series (10.8) converge 
to the prescribed edge data fi(t) defined in (10.7). In  this figure i = 1 (the convergence 
result is the same when i = 2,3,4) ,  and M is the number of terms in the biorthogonal 
series which is necessary for acceptable convergence. The number M increases as 7 
decreases. Convergence to the stream function given below is uniform and absolute 
a t  a rate faster than the numerical series Zn-4: 

m 

~44(t,Y/) = -m 2 c4mexp$~)$im)(t)  + n= 2 1 ~ 2 n e x p  (Any) Czn(t)* (10.10d) 

We have plotted the contours of the four functions defined in (10.10) for three 
different values of (7, S )  in figures 10, 11 and 12. The total stream functions formed 
from the component functions of figures 10-12 are shown in figures 13 (a) ,  ( b )  and (c)  
respectively, where realistic values of aI and a, have been employed. 
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FIGURE 11. As for figure 10 but for 71 = 4.018.5; S = 143. 
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FIUURE 12. As for figure 10 but for 7 = 6.018.5; S = 44. 

To obtain the level lines of the secondary motion in the deformed domain we must 
invert the mapping of the deformed domain into the reference domain. This inversion 
is accomplished in two steps; we first reintroduce the physical variables 

(To, 4 = +(6 - 4 ( t ,  Y), 
then we invert the shifting transformation (4.5). The inversion of (4.5) up to order 
four can be completed after we compute hC41. For now, our main observation is that the 
secondary motion in the climbing bubble, where the motion is most intense, becomes 

19-0 



564 J .  Yoo, D.  D .  Joseph and G .  S. Beavers 

t 
0.222 1.222 2 - 2 2 2  

0 

- I  

1 - 

Y 

-3 

-4 

-5 

I 
I t 

I 8  2.778 3.778 4.8 5.8 6.8 
0 

- I  

- 2  

Y 

-3 

-4 

-5 

05 

-0.5 x 10-4 

-3 

-4 

-0. I x I 0-5 

x 10-5 

Y 

FIGURE 13. ContoursofthetotalstrearnfunctionY,(t,y) = R,Y,,+R,Y,,+R,Y,,+R,Y,,in the 
dimensionless reference domain, where R, = 1, R, = 4(3a, + 2a,)/pi?, R, = 4(01,+ a,)/p6', 
R, = R3 R,. 3a, + 2a, = 1.0 g cm-l; a, + a2 = 1.0 g cm-'. 
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S 23 1 143 44 

- - 4.0 - 0.635 

independent of 6 when 7 = $18 < 8 .  The reader may verify this statement by checking 
the flow in the upper left-hand corners of the two pictures in figures 14(a) and ( b ) ,  
where = 0-635 cm, 8 = 3.175 cm and $ = 0.635 cm, 8 = 6.35 cm respectively. 

11. The rise in height at fourth order 
To obtain the height rise a t  fourth order it is necessary to calculate the pressure 

distribution a t  fourth order, which has two parts. One part is independent of z (or y) 
and is induced by z-independent viscometric flow and depends on 1; and y .  The other 
part, which is dependent on r and z, is induced by the combined effect of the z- 
dependent part of the circumferential velocity and the secondary motion in the 
azimuthal plane. The component functions of the first part have already been obtained 
in (6.9)-(6.12). The component functions of the second part may be obtained by 
integration of the equations preceding (6.19) once the stream functions Y4i(t, y) are 
known. We find that 

@41(4 $4 = a3 ( 5 Ql, [exp (P, Y) x&) + D m 1  
- m  

m 

+ c ~ l n [ e x p  ( A ,  9) qln( t )  + ~ 1 n 1 ]  - 4 1 ,  (11.1) 
n = l  
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FIGURE 14. Contours of the total stream function in the dimensional reference domain: 

301, + Za, = 1.0 g cm-l; a, +a, = 1.0 g cm-’. 

(4 
g (cm) 0.636 
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The identification of the contours of the stream function in the upper left-hand corner of t,he two 
di:grams indicates that the streamlines in the climbing bubble become independent of h when 
210 < f .  
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t 1 

F r a u ~ ~ ~ 1 5 .  Component functions of the height-rise coefficients a t  fourth order appearing in 
( 6 . 3 ) : H 4 , ( t , 7 , S )  ( i =  1,2,3,4);H4,(t,7;1,S)(j= 1 ,2 ,3 ,4 ,5 ) .$=0*635crn;h=  &36cm;S=231. 

2 
D,, = -- b2 - a2 [23{&23 Jl(An t ,  + &24 'l('n t)}l"a 

Extensive tables of values of the functions Q4&, 0) for three different values of (7,s)  
and of the functions 64i(t) for three different values of 7 are given in tables 24.1, 
24.2 and 24.3 of Yo0 (1977). 
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FIauRE 16. As for figure 15 but for 6 = 4.0 em; 

The inhomogeneous terms of the equations (6.21) for the height rise coefficient can 
w be computed from (10.10) and (11.1)-(11.5): 

(11.7) 
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where 

(11.9) 

(1 1.10) 
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Bln(t) = $( - ~ ~ o ( h , t ) +  8 ~ 1 ( h , t ) + 2 h , t z ~ o ( h , t )  I 
569 

2B h2, 
4?2,(t) = -7 t g i (hn  t )  + 2At{Q21 Jo(hn t )  + Q22 Yo(h  t)> 

+ 6h7&{&23 JO(hn t ,  + &24 t)> - t{&23 Jl(hn t ,  + &24 q ( h n  t)> 

[2t{&23 Jl(An t, + &24 
2 

b2 - a2 t))lt. -- 

The four component functions satisfying (6.20) and five component functions 
satisfying (6.21) for the boundary conditions H ' ( a )  = H'(b) = 0 are plotted in figures 
15-17 for the three different values of ( q , S )  that have been used in the previous 
figures. 

Various superpositions of these component functions define the shape of the free 
surface up to order four. These superpositions are discussed next. 

12. Determination of the numerical values of the rheological 
constants up to order four 

In principle we can determine the material constants p, 61, /?, F and 9 by comparing 
theory and experiment. When these constants are known the distribution of circum- 
ferential velocity, secondary motion and height rise up to order four are uniquely 
determined. We now turn our attention to some methods for converting this point 
of principle into a practical technique for rheometrical measurements. 

The constantp can be determined by simple torque measurements at thelowest values 
of the angular velocity. We shall suppose that ,u is known. Then the nonlinear response 
of the fluid up to order four is determined by the values of the four rheological constants 
/? = 301, + 2a2, & = a, + a2, 2; = p2  +p3 and 9 = y3  + y4 + y6 + Qy6 which appear in the 
fourth-order theory of the Weissenberg effect. These constants may be determined 
sequentially. We first find /? from height-rise measurements at the smallest values of 
the angular velocity Q. We may then determine ,i2 from the distribution of circum- 
ferential velocity at the smallest values of R. The two remaining constants & and 9 
can then be determined by measuring free-surface profiles a t  slightly larger values of 
the angular velocity. In  this way all five constants which characterize the Weissenberg 
effect up to order four can be determined from experimental measurements by use of 
the Weissenberg effect alone. 

The rheometrical method just described can be carried out in practice, as we show 
below, but it is a time-consuming and delicate method. 
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FIGURE 18. The static rise h , ( ~ )  satisfying the nonlinear surface-tension equation (12.3) for the 
sample of STP used by Beavers & Joseph (1975) to generate the experimental date, shown in 
figure 22. PI = -tan 55"; P, = 0. 

12.1. Determination of 61, 9 and j2 bypro$lefitting 
In  our first comparisons of theory and experiment we used data collected by Beavers 
& Joseph (1975) for STP. Unfortunately, circumferential velocity profiles were not 
measured by Beavers & Joseph, so that three constants must be determined from 
the measured height-rise curves. The experiments were performed with circular rods 
of small radius iZ rotating in a circular container of radius 6 = 15.25 cm. We confine 
our attention to the experiments with B = 0.635 cm. In their experiments Beavers & 
Joseph coated some rods with Scotchgard, while other rods were uncoated. The coated 
rods are better suited for comparisons with theory because the coating essentially 
eliminates the static rise and allows the assumption h'(6) = h'(6) = 0 of the theory to 
be satisfied. Unfortunately, Beavers & Joseph have very little data on climbing onto 
coated rods in the range of angular velocities of interest in the higher-order theory, 
For uncoated rods we are therefore forced to use the ad hoc procedure of adding to 
the total rise due to motion a static rise computed from the nonlinear surface-tension 
equation using experimentally determined contact angles. 

The raw experimental data which we shall now use are shown as a solid line in the 
eight frames of figure 22. The dashed lines are from the second-order theory: 

h(r; Q) = h,(ro) + 4h[21(ro) R2. (12.1) 

Beavers & Joseph (1975) found that the second-order theory (12.1) could be made to 
fit the low angular velocity data (w < 3 rev s-l), if 

,8 = l-ogcm-1 (12.2) 

(see their figure 9 and table 1) .  For the uncoated rods, a static climb h = h, when i2 = 0 
has been added in (12.1): h,(r) satisfies the nonlinear surface-tension equation 

( rhi )' -pgh, = C, hi(&) = Pl, h$) = P., 
r (l+hiz)t 

(12.3) 

where Pl and Pz are taken from measured values of the contact angle and C is a 
constant chosen such that the volume average of h, is zero: 

(12.4) 

The static rise for PI = -tan 55" and Pz = 0 (roughly a mean value for the uncoated 
rods mentioned in figure 22) is shown in figure 18. 
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We now consider the experimental results in the light of fourth-order theory: 

(12.5) 

To compare (12.5) with experiments it is necessary to choose the values of the three 
remaining rheological constants &, ,6 and 7 on which hl41(r) = hf41(r, &, /?, j, 7) depends. 
A method for determining the values of these constants will now be discussed. 

The constants to be determined are such that the theoretical and measured rise 
ourves agree over the largest interval of values of Q. The theoretical expression (12.5) 
for the height may be written as 

1 1 
2! 4! 

h(r; Q) = h, + - h['1Q2 + - hr4lQ4. 

where, for the STP motor-oil additive used by Beavers & Joseph, the following 
quantities are known: 

g = 9 8 0 ~ m s - ~ ,  p = 0-89g~m-~ ,  T = 3 0 - 9 g ~ - ~ ,  ,u = 150gcm-ls-l, 

(a, &) = (0.635 cm, 6-35 cm),? 

Q$ = g/& = 1.54 x 103sb2, S = pg(&-&)2/(4T) = 231, 

R, = 4P/(pa2) = 11.15, Rs = Rg = 124.2. 

The unknown quantities which are to ke determined from the experiments are 

R, = 4&/(pa2), R4 = R2R3,  Kl = ,~/(16fl), K ,  = /?/(3369). 

In figures 19-21 we have plotted the functions 
5 3 

;r: RiH4i9 R i G 4 i ,  R2844 
i= 1 i=l 

for various values of ~3 for a fixed value of /? = 1.0 g cm-1 and a, < 0 (see Coleman & 
Markovitz 1964). Thus for each choice of & (with a, < 0) we looked for values of f i  
and 9 which best fit (12.6) to experimental data. We were able to come near to the 
data only when 0.8 < 61 < 1.2 g cm-l. For values of & outside this range it was not 
possible to fit the profiles shown in figure 22. We required that the selected values of 
9 and G should not destroy the agreement between theory and experiment when 
w < 3revs-' but should give a proper correction when w = 3 and w = 4revs-l. With 
a certain degree of uncertainty (about which we are unsure) we opted for the values 

& = leOgcm-l, f i  = -0.0117g~cm-~, 9 = -0 .5363~ 10-5g~~cm-l. (12.7) 

t In the experiments 6 was actylly>5.25 cm. But we have already seen that the climb at the 
$mer cylinder is independent of h for !),fa > 5, so all our calculations have been carried out for 
b = 102. 
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FIQURE 19. R,  H41 + R,  H,, + R, H,, + R, H44 + R, H,, for the STP used by Beavers & JoFeph (1975), 
evaluated for various assumed values of Oi (= a,+a,) and al. 6 = 0-635em; b = 6-35cm; 
/?(= 3a1+2a,) = 1.0gem-'; R, = 1; R, = 11.15; R, = 124.2; R, = 48/pG2; R, = R,R,. 

(4 (b)  (4 (4 (4 (f i (9) 

oi (g em-1) 0.5 0.8 1 .O 1.2 1.5 1.8 2.0 
(gem-? 0 - 0.6 - 1.0 - 1.4 - 2.0 - 2-6 - 3.0 

R, 5.57 8.92 11.15 13.38 16.72 20.06 22.29 

Using these values in (12.6), we plotted the height rise (12.5) as closed dots on figure 
22. As a comparison, for cases with higher angular velocity, we have also added the 
best-fit curves obtained from two other sets of values for (a, I;, f ) .  

There seems to be a region where fourth-order theory works fairly well. Naturally, 
as we increase Q (or 2), no matter how carefully we choose the constants, the theory 
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FIGURE 20. R, H4 ,  + R, H42 + R, H,, for the conditions defined in figure 19. 
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FIGURE 21. R,&, for the conditions defined in figure 19. 
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FIGURE 22 (part 1). For legend see p. 577. 

fails to agree with the experiment because the effect of terms of order higher 
than four must be taken into account. 

12.2. Determination of 2 by direct measurement of the circumferential velocity 

It is possible to use experimental measurements of the circumferential component of 
velocity v(r, h) evaluated on the free surface (z,, = 0, z = h) to determine the constant 
1; once B is given (see figure 7). In  fact, as we mentioned at  the end of 3 9, circum- 
ferential velocity measurements have been reported by Hoffman & Gottenberg (1973) 
for a solution of polyisobutylene in cetane (see their figure 7). Once fi  has been deter- 
mined, we may determine the other two constants, 8 and ?, by fitting theoretical 
height-rise profiles. To investigate the feasibility of this procedure and to check the 
validity of the procedures used in 5 12.1, we measured circumferential velocity 
profiles in three fluids by methods described below. 

The central part of the apparatus consisted of a large vat of fluid in which a vertical 
circular rod was made to rotate about its axis. The rod was driven from below by an 
Electrocraft Motomatic Type E-550 d.c. servomotor with a feedback control system. 
The upper end of the rod was accurately aligned by means of a spring-loaded cone 
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FIGURE 22 (part 2). For legend see p. 577. 

1 .o 

bearing set in a transparent Plexiglas plate. Rotational speeds were measured by 
means of a light source and photomultiplier tube connected to a digital counter, and 
ten reflecting surfaces on the drive-shaft connecting the motor to the rod. Surface 
circumferential velocities were measured by a technique similar to that employed by 
Hoffman & Gottenberg (1973). The fluid surface was illuminated with two General 
Radio Strobotacs driven in synchronization a t  a predetermined flashing rate by means 
of a Wavetec function generator. SmalI aluminium particles in the size range 0.15- 
0.30 mm were dropped on the surface and multiple-image photographs were taken with 
a Nikon-F 35 mm camera incorporating a Nikkor 500 mm catadioptric telephoto lens. 

Three different rods were used in the experiments, with radii B of 0-4775,0*6312 and 
0.9525 cm. In addition, three fluids were used, consisting of two different samples of 
STP (polyiso'butylene in a petroleum oil) and one sample of TLA-227 (a methacrylate 
copolymer in petroleum oil, manufactured by the Texaco Oil Company). The density, 
surface tension, shear viscosity and climbing constant p were determined by the 
standard procedures described in Beavers & Joseph (1975), and are summarized in 
table 3. 
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FIQURE 22 (parts 3 and 4). For legend see facing page. 
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FIGURE 22. Comparisons of experimental profiles with theoretical predictions for a rod of radius 
0.635 cm rotating in a large vat of STP. The experimental results are from Beavers & Joseph 
(1975). -, experiment; ---, second-order theory (12.1) with ,8 = l.Ogcm-*. Three curvea from 
fourth-order theory are also given: 

& (g cm-1) 
A 

P (g 5 cm-l) y (g a8 cm-l) 

0 1.0 - 0.01 17 - 0.6363 x 10-6 
0 1.2 0.01197 - 0.36 18 x lo-* 
X 0.8 - 0.03333 - 0.8960 x 

The comparisons are identified by the rod rotational speed (revs-l). The fourth-order theory 
gives the proper correction to the second-order theory for w = 3 and 4 rev s-l. The best fit of 
fourth-order theory with experiment occurs for the closed dots. For w > 4 rev 8-l the fourth-order 
theory no longer agrees with experiment because higher-order terms must be included. 

Our first measurements of circumferential velocity were made using the 0.9626 cm 
rod in the fluid STP- 1. The variations of circumferential velocity with radial position 
for two rod rotational speeds are shown in figure 23. We then used (9.6) to search for 
a value of $ such that the circumferential velocity distribution predicted by (9.6) 
gave the best fit with the experimental data for the lower of the two rotational speeds 
[curve (a) in figure 231. This value of $ was then used in (9.6) to predict the circum- 
ferential velocity distribution a t  the higher rotational speed [curve (b)]. 

For the experiments with STP-2 and TLA-227 all three rods were used in each 
fluid, and data were recorded at either three or four different rod rotational speeds. 
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Fluid STP-1 STP-2 TLA-227 

Average temperature 23.0 21.9 22.2 
during experiments ("C) 

Density, p (g 0.890 0.866 0.896 

Surface tension, 30.9 30.7 30.9 

Shmr viscosity, p (P) 160 90 320 

T (dyne ern-') 

Climbing constant, 
18 (g cm-1) 

1.42 0.89 23.6 

TABLE 3. The parameters characterizing the fluids used 
in the circumferential velocity experiment8. 

24 L 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1-6 1.8 
r-a (cm) 

FIGURE 23. Comparison of measured circumferential velocities on the free surface with values 
predicted using third-order theory (9.6) for STP-1 (see table 3). 2 = 0.9625cm: B =  1.42gcm-'; 
p = - 0.030 gscm-1. 

(4 (b)  

w (revs-') 2.52 3.48 

The circumferential velocities measured in STP-2 and TLA-227 are shown in figures 
24 and 25 respectively. Our procedure for the determination of f i  was to use (9.6) to 
locate the value which gave the best fit with the experimental results for the two 
lowest rotational speeds of the 0.9525 cm rod. We fitted the calculated curves to the 
experimental data at two rotational speeds because the calculated distributions are 
more sensitive to changes in ,2 as the rotational speed is increased. Having found 
value for 6 for each fluid in this way, we used these vaIues to compute the theoretical 
circumferential velocity distributions corresponding to all the remaining experiment: 
ally measured distributions. The agreement between the measured and predicted 
velocities is extremely good a t  all rod rotational speeds except the highest for each 
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rod. It is clear that at  a particular temperature there is a single value of ,G for each 
fluid, and that this is only a property of the fluid and not of the rod size. At the highest 
rotational speeds the predicted values appear to agree quite well with the measured 
values away from the rod, but close to the rod (9.6) predicts circumferential velocities 
which are higher than the measured values. These rotational speeds are outside the 
region of validity of the third-order perturbation theory. 

13. Secondary motions in the deformed domain 
We now describe the secondary motions which are generated in the deformed 

domain. In  order to present a quantitative discussion we shall again consider the 
experimental results used in $12.1, in which a circular rod (a = 0-635 cm) rotates in 
a large vat of STP for which the rheological constants up to order four have been 
determined and have the values given by (12.7). The height rise is then given by 
(5.41c), or equivalently by (6.3). Using (5.41c), we write h(r; Q) as aneven polynomial 
(12.5) of fourth degree in Q consistent with the order of approximation of the analysis. 

The distribution of circumferential velocity is given up to terms O(Q3) by (6.1). 
On the free surface z = h, we have y = axo/$ = 0, so that the circumferential velocity 
distribution on the free surface is given by 

8Q3 1 
v(r ,  h; '1 = aQK(tJ 7) +- 3! (-'81(tJ Kl 7) + G2 [V3,(tJ O, 7, s, + R2v32(t> OJ 7, s)l), 

(13.1) 

where t = at-/&. Using the values given by (12.7), we may represent the graph of 
(13.1) by the curve labelled ,G = -0.0117gscm-1 in figure 7. In  figure 26 we have 
plotted this distribution on the actual deformed domain associated with (12.5). 

To obtain the velocity and pressure fields in the deformed domain where the real 
flow takes place, we must invert the shifting transformation (4.5): 

zo = z - hs + - h[21(ro) + ( 
We then have the secondary motion (6.4) in the form 

where h(r; 0) is given in terms up to order four in Q. The contours of $(r, z ;  Q) in the 
deformed domain 

Q4 4! 1 Qa 
2! 

= [r,zl& < r < 6, z < h,+-h[21(r)+-h[41(r) 

are shown in figures 27(a) and ( b ) ,  where ( b )  is a magnification of the boxed region 
shown in (a). These representations are not merely sketches; they are uniformly 
scaled representations of the free surface and secondary motion up to fourth order 
which are predicted to occur when the parameters have the values assumed by (12.7). 
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FIGURE 24 (a, b ) .  For legend see facing page. 

Our computation shows that when 7 is small (say &) there is a primary eddy at  
the top of the annulus with a counterclockwise circulation. The circulation is most 
intense under the climbing bubble and draws the fluid near the free surface in towards 
the rod while forcing the fluid lower down away from the rod. This direction for the 
circulation runs against uninformed intuition; intuition suggests that the fluid in the 
bubble represents an accumulation from a clockwise circulation which drives the 
fluid up the rod. Intuition fails because the bubble is held up in the first place by static 
forces associated with the circumferential shearing motion (not the secondary motions) 
and the secondary motions are driven in an anticlockwise sense by the ‘big torque ’ 
associated with the vertical stratification of inertia and normal stresses. 

In  the region where fourth-order theory holds, we may compute the radial and 
vertical components of velocity from (3.4) and (13.2): 

u = r-l a$(?-, z ) / a z ,  w = - r-1 a$(r, z ) /a r .  (13.3) 
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FIGURE 24. Comparison of measured circumferential velocities on the free surface with values 
predicted using third-order theory (9.6) for STP-2 (see table 3). I= 0.89gcm-l; p = -0.01Ogs 
om-'. Tho curves are identified by rod rotational speed (rev s-l). 

(4 (b)  (4 
5 (cm) 0.4725 0.6312 0.9525 

The value of @ wm chosen by finding the best fit between theory and experiment for the two 
lowest rotational speeds of rod (c ) .  

We consider the radial and vertical components of velocity on the free surface 
z = h(z, = y = 0): 

Q4p84 4 U 2 a Y 4 [ ( t , O )  

4! p g i = 1  t ay ' 
u(r ,h ;Q)  = -- Ri- ( 1 3 . 4 ~ )  

(13.4b) 

Then we may combine (13.1) and (13.4) to find the distribution of the speed on the 
free surface. We find that the secondary motion makes the fluid wind up on the free 
surface of the bubble and sink near the rod. These predicted features of the motion 
are verified by our experiments in all cases provided that Q is small enough. For 
example, figures 28 and 29 (plates 1 and 2) show the motion, viewed from above, of 
aluminium flakes on the surface of STP and TLA-227. The flakes start well outside 
the bubble and slowly spiral inwards to the rod, moving up the free surface of the 
bubble. 
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FIGURE 26 (a, b ) .  For legend see facing page. 
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A t  higher angular velocities the experiments by Saville & Thompson (1969), 
Hoffman & Gottenberg (1973) and ourselves indicate the development of a ‘little 
torque’ in the bubble, but not in the body of the fluid, which drives a ‘little clockwise 
eddy’ on the top of the ‘big counterclockwise eddy’ in the body of the fluid. The 
presence of two eddies probably correlates with the persistent indentation of the free 
surface which is nearly always observed in climbing experiments when i2 is large. 
The fluid now moves down the free surface towards the outer edge of the bubble. This 
motion is shown in the photographs in figures 30 and 31 (plates 3 and 4), which were 
taken during the same experimental runs as figures 28 and 29 respectively. Aluminium 
flakes, which were initially deposited on the bubble next to the rod, spiral to the outer 
edge of the bubble, where they disappear from view below the free surface of the 
fluid. 

The two different situations, one for small values of Q and the other for larger values 
of Q, are sketched in figure 32. The explanation of these two regimes of flow may be aa 
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FIGURE 25. Comparison of measured circumferential velocities on the free surface with valuss 
predicted using third-order theory (9.6) for TLA 227 (see table 3). /? = 23-5gcm-l; p = - l.lOgs 
cm-l. The curves are identifiad by rod rotational speod (rev 8-l). 

(4 (b)  (4 
2 (cm) 04725 0.6312 0.9525 

The value of f i  was chosen by fhding the best fit between theory and Bxperiment for the two loweat 
rotational speeds of rod (e ) .  

follows. For small values of Q, the flow develops in just the way predicted by the 
perturbation theory up to order four. At larger values of 0, outside the range of the 
perturbation theory in general, the bubble height increases to such an extent that the 
basic distribution of circumferential velocity changes from a kind of vertically 
stratified viscometric flow to something more akin to a solid-body rotation. The 
alteration in the circumferential velocity is a consequence of the fact that the free 
surface, which is now more steeply inclined to the vertical, cannot support shear 
stresses and, hence, cannot oppose the tendency of the rod to rotate the tall bubble as 
a solid body. The resistance to such solid-body rotation comes from the velocity field 
in the body of the fluid below the bubble. Because the shearing in the bubble is 
diminished in the high bubble, the distribution of shear stresses which generates the 
‘ big eddy ’ is altered and the ‘big torques ’ in the bubble first diminish and then, in a 
weak state, change sign. But the ‘big eddy’ below the bubble is still driven by the 
same torques arising from vertical stratification of the viscometric flow, and the 
‘big eddy’ then drives the little one. At the point on the free surface where the two 
eddies are joined there is asuction whichindents the free surface. In fact, the indentation 
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FIQURE 26. The distribution of circumferential velocity superimposed on the actual deformed 
domain for the fluid (STP) used for the comparisons of 8 12.1. 2 = 0.635cm; p =  1.0gcm-1; 
di = 1.0 g cm-1; ,G = - 0.01 17 g s cm-1; R = 4 rev s-1. 

can become ‘cusp like’, as shown in the photographs in Beavers & Joseph (1976), 
Saville & Thompson (1969) and in figure 4 of Hoffman & Gottenberg (1973). 

This work was supported by the U.S. Army Research Office and by the National 
Science Foundation under Grant No. ENG 75-19047-A01. 

FIQURE 27. (a) Secondary motion in the deformed domain for the situation shown in figure 28. 
The stream function is given by 

a = 0.635cm; 2 = 6.35cm; R = 4revs-l; p =  1.0gcm-’; Oi = 1.Ogcm-l. (b) Enlargement ofthe 
boxed region of (a). 
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Appendix. Stokes flow between concentric cylinders 
Yo0 & Joseph (1978) have solved the edge problem for Stokes flow between con- 

centric cylinders. The main features of the theory are summarized here. We also 
justify the formal solution with a convergence theorem, following lines laid out by 
Joseph (1977) and proved in the thesis of Yo0 (1977).  We refer the reader to Yoo's 
thesis for proofs and further details. 

Consider the edge problem 

in a Q t Q b, - 00 < y < 0, with boundary conditions 

and with the data 

real and prescribed on y = 0. Here a and b are the radii of the inner and outer cylinders, 
respectively, made dimensionless with respect to the actual gap size in such a way 
that the dimensionless gap size b -a always has the value 2, i.e. a = 27/( 1 - 7) and 
b = 2/(1 - T ) ,  where 7 = a/b. 

The solution of problem (A 1 )  is obtained in the paper of Yo0 & Joseph (1978) 
and is given by 

where the $in'(t) are strip eigenfunctions for Stokes flow between concentric cylinders: 
LZ[exp ( f P, y) $In)(t)] = 0. The strip eigenfunctions are given by 

$in'(t) = A:")tJ,(P,t)+A~,)tY,(P,t) +A$' tzJo(P,t) +AC)t'Y,(P,t), (A 3) 

where the coefficients A$,) and the eigenvalues P, are defined simultaneously to satisfy 
the four boundary conditions given in (A 1 b ) ,  which is now equivalent to 

$P)(U) = $i"'(b) = d$:" ' (~)/dt  = d@'(b)/dt. (A 4) 

There are a countably infinite number of eigenvalues P, of (A4)  which are sym- 
metrically located in the complex P plane. We make use of the eigenvalues with 
positive reaI parts. The P, are numbered in a sequence corresponding to the magnitude 
of their real parts. We define 

where the overbar designates the complex conjugate. Then $$-")(t) = @)(t )  (n = 1, 
2,  3,  4, ...) is a strip eigenfunction belonging to the eigenvalue P-,. Since the given 

- 
P-, = P,, (A 5 )  

edge data (A 1 c) are real, - 
c-, = c,. (A 6) 
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Small R 

Large R 

587 

FIUUFLE 32. Sketch showing the change in the secondary flow pattern from a single large eddy at 
small rod rotational speeds to a pattern consisting of a large eddy and a small eddy at higher 
rotational speeds. The secondary motion in the bubble changes direction, and at higher rotational 
s p d s  it is driven by the motion in the large eddy. 

We define 

It is possible to write (A 1 c) as 

To determine the constants C,, we introduce the data vector 

the eigenvector 
f = e1f+e2g9 

@n) = el +P + e2 +in) 
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and the adjoint eigenvectort 
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+(n) = el $in) + e, $in), 
where e, and e, are orthonormal base vectors. We find from (A 1 )  and (A 7) that the 
eigenvector cp(”)(t) satisfies the differential equation 

with 

where A = - el e, + e,  el + 2e, e,, or in matrix notation 

The adjoint eigenvector +(n)(t) satisfies 

with .e2 = 0 at t = a, b, +(n) .  e - - d+@) 
2 -  dt 

(A 1Oa) 

(A l o b )  

where AT = - e, el + el e, + 2e, e,. We find that +hn)(t) and #’(t) both satisfy the 
reduced biharmonic equation 

d2  1 d 

with F(a)  = P(b) = F’(a) = F’(b)  = 0. We therefore put 

$-8’(t) = $iW, 
and +in)(t) may be determined directly from the second component of (A lOa), i.e. 

This leads to 

$P’( t )  = [ A p - ( 2 / P n ) A p ] t J 1 ( P , t ) +  [Ap--(2/Pn)Apn’]tYl(Pnt) 
+A~n)t2Jo(P,t)+A~nn’t2Yo(Pnt). (A 12)  

The biorthogonality condition follows in a standard way from (A 9a,  b)  and (A 10a, b ) :  

where 

K ,  = ( -2b2/P%) [A&n;”’Jl(Pnb)+A~nn’Yl(Pnb)]2 

+ (2a2/P;) [A&nlt’Jl(P,a) +Aim) Y1(Pna)l2. (A 14) 

t For the derivation of +,cn) and the following account of the biorthogonality, see Yo0 & Joseph 
(1978). 
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Expressing the series (A 8) in vector form 

m 

f ( t )  = X cn@’(t), 
--oo 

we find, using (A 13), that 

Equation (A 16) determines the coefficients 

Equations (A 2)  and (A 17) define a formal solution of the Stokes-flow edge problem. 
The formal solution is the solution if the series on the right of (A 15) converges to  f ( t ) .  

Suppose that f ( t )  and g(t) are three-times continuously differentiable and four-times 
piecewise diflerentiable with a finite number of bounded j ump  when a < t < b. Suppose 
further that 

with no further restrictions on g(t). Then 

f ( a )  = f ( b )  = f ‘ (a )  = f ’ (b)  = 0 (A 18) 

When n i s  large, 
cn = 0 ( ~ - 3 )  

and, for all t ,  a < t < b, the series (A 15) may be majorized by a convergent numerical series 

where C is a constant independent of n. 

The proof of this theorem may be found in the thesis of Yo0 (1977). 
The above statement can be regarded as an extension of Joseph’s (1977) theorem 1. 
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DESCRIPTION OF PLATE 1 

FIGURE 28. Sequence of photographs showing the motion of aluminium flakes on the surface of 
STP-2 (see table 3) for a rod of radius 0.9525cm rotating at a speed w = 2.05revs-I. The motion 
is viewed from above. The aluminium flakes start beyond the bubble radius and spiral radially 
inwards (i.e. up the surface of the bubble) towards the rod. 

(4 ( b )  (4 (4 (4  (f) (8) (h) 

Time(s) 0 28 70 123 163 211 310 392 
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FIGURE 28. For legend 500 facing page. 
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Plate i 

(Facing p .  590) 
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FIGURE 29. For legend see facing page. 
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Plate 2 
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FIGURE 30. Sequence of photographs showing the motion of aluminium flakes on the surface of 
STP-2 when the rod in figure 28 rotates at  w = 4.45revs-l. The aluminium flakes start close to the 
rod and rapidly spiral down the bubble (radially outwards) to the outer edge of the bubble, 
where they disappear beneath the surface of the fluid. 

(a) (b )  (c) (4 (e) (A 
Time (s) 0 2 3 4.5 8.5 14 

DESCRIPTION OF PLATE 2 

FIGURE 29. Sequence of photographs showing the motion of aluminium flakes on the surface of 
TLA-227 (see table 3) for a rod of radius 0.9525cm rotating a t  a speed w = 0.49rovs-l. The 
motion is viewed from above. The aluminium flakes start beyond the bubble radius and spiral 
radially inwards (i.0. up the surface of the bubble) towards the rod. 

(a)  (b)  (4 (4 (4 (f) (9)  (h) 

Time ( s )  0 10 30 54 97 177 24 1 275 

YOO, JOSEPH AND BEAVERS 



Journal of Fluid Jlechanics, Vol. 92, part 3 Plate 4 

FIGURE 31. Sequence of photographs showing the motion of aluminium flakes on the surface of 
TLA-227 when the rod in figure 29 rotates a t  w = l.I2revs-'. The behaviour of the flakes is the 
same as in figure 30. 

(4 ( b )  (4 (4 (4 (f 1 
Time (s) 0 4.5 10 17.5 24 44 
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